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Abstract. Infants discover categories, detect novelty, and adapt to new
contexts without supervision—a challenge for current machine learning.
We present a brain-inspired perspective on configurations [1], [2], a finite-
resolution clustering framework that uses a single resolution parame-
ter and attraction–repulsion dynamics to yield hierarchical organization,
novelty sensitivity, and flexible adaptation. To evaluate these proper-
ties, we introduce mheatmap, which provides proportional heatmaps and
reassignment algorithm to fairly assess multi-resolution and dynamic be-
havior. Across datasets, configurations are competitive on standard clus-
tering metrics, achieve 87% AUC in novelty detection, and show 35%
better stability during dynamic category evolution. These results posi-
tion configurations as a principled computational model of early cognitive
categorization and a step toward brain-inspired AI.
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1 Introduction

Learning representations as humans do has long been a central goal in AI and
cognitive science. Humans and non-human animals can discover structure with-
out labels. Infants form categories (e.g., animals vs. vehicles; cats vs. dogs) and
detect novelty long before language [3]–[5], and similar unsupervised sensitiv-
ities are observed in animals [6]. These findings indicate an early, hierarchical
organization of experience into similarity-based groups that support recognition,
generalization, and novelty detection. In sharp contrast, modern ML struggles to
discover such structure without supervision: supervised models depend on mas-
sive labeled datasets [7], [8], and self-supervised or contrastive methods learn via
engineered proxy tasks [9]–[11]. These pipelines rarely yield human-like hierar-
chical categories or spontaneous novelty responses without explicit supervision
or carefully engineered tasks [12]. This gap matters: without human-like, label-
free structure discovery, ML systems struggle with open-world generalization,
out-of-distribution shifts, and evolving categories.
⋆ Corresponding author: shixin.xu@dukekunshan.edu.cn
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Existing unsupervised representation learning and clustering methods aim
to replicate this ability—k-means, spectral, agglomerative, density-based clus-
tering [13]–[16] and contrastive/self-supervised pipelines [9]–[11]. However, they
typically expose multiple method-specific hyper-parameters; some require pre-
specifying the number of clusters (e.g., k-means), others rely on scale parameters
or linkage choices (e.g., DBSCAN, hierarchical). They are not generally designed
to signal novelty or to track evolving categories, and they often lack a single
global parameter that coherently sets granularity across the dataset.

What is missing is a simple framework with one finite resolution parame-
ter that supports the three human-like abilities highlighted above: hierarchical
organization, novelty sensitivity, and flexible adaptation.

In this paper, we provide a brain-inspired perspective on configurations, a
recent finite-resolution clustering framework [1], [2]; we formalize it next in Sec-
tion 3. We further present mheatmap, an evaluation tool designed to visualize
generalization dynamics and quantitatively assess the emergence of these human-
like clustering abilities in Section 4. We evaluate on synthetic and real-world
datasets in Section 5 and find that configurations reproduce hallmarks of early
cognition—hierarchical selectivity, novelty sensitivity, and graceful adaptation
under evolving categories—while remaining competitive on standard clustering
metrics. Our contributions are:

(1) A conceptual connection between early cognition and configurations.
(2) mheatmap: proportional visualization and a reassignment metric for dynamic

clustering analysis.
(3) An empirical study showing that configurations express brain-inspired clus-

tering behaviors not captured by standard baselines.

2 Background and Motivation

Habituation studies show that 3–4-month-old infants form categories without
labels and prefer novelty, with effects observed at both superordinate (e.g., an-
imals vs. vehicles) and basic levels (e.g., cats vs. dogs) [3]–[5], [17]. Computa-
tional work further supports hierarchical sensitivity in early perception [18] and
rapid adaptation/meta-learning in infancy [19], [20]. We take three empirically
grounded targets from this literature—unsupervised organization, hierarchical
flexibility, and novelty sensitivity—as operational desiderata for our model.

Modern ML typically relies on labels or engineered proxy tasks [9]–[12], and
classical clustering fixes granularity or exposes many method-specific knobs with-
out a single global control that lives in a finite space [13], [15], [16]. Critically,
most methods neither signal novelty nor handle evolving categories in a princi-
pled way. We therefore seek a finite-resolution formulation with one parameter
that governs granularity while supporting novelty and dynamic adaptation.

Static metrics such as ARI, NMI, and V-measure [21]–[24] do not address
three core issues in multi-resolution settings: unmatched cluster counts across
resolutions, arbitrary label permutations, and semantically meaningful merge–split
evolution. We introduce mheatmap to fill this gap with proportional visualization
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and a stability measure (1/ARI) that enable fair, cognitively aligned evaluation
across resolutions and over time.

3 Configurations: Def. and Brain-Inspired Perspective

Building on our motivation for brain-inspired clustering, we now address the
multi-granularity challenge through a finite-resolution framework that naturally
bridges cognitive science and machine learning. Traditional clustering approaches
either require pre-specification of granularity 3 or lack a single finite-space param-
eter that controls granularity 4, failing to capture the flexible, context-dependent
organization observed in early cognition without “supervision” 5. As one possible
solution, we turn to configurations, a recent finite-γ clustering framework [1], [2].

3.1 Recap of Configuration Definition

Let there be n data items, the goal of hierarchical clustering is to find all “good”
partitions, each of them can be denoted with a vector of cluster indices ω ∈
{0, 1, . . . , k}n. Suppose there are m such partitions, we denote them as a matrix
Ω = {ωi}mi=1, with i increasing as granularity increases.

Definition 1. When m is finite, each ω is called a configuration (Cfg.), and
Ω is called configurations. In this paper, when there exists a single parameter
γ ∈ [0,∞) that controls granularity, we denote the configuration at γ as Ωγ .

Then an obvious proposition follows by the definition itself:

Proposition 1. There always exist two special configurations: ω0 := Ω0 is the
coarsest configuration, where all items are in the same cluster. ω∞ := Ω∞ is
the finest configuration, where each item is in a separate cluster.

We present two illustrative examples in Figs. 1a and 1b, with each clustering
a set of entities {a1, a2, b1, b2} and entities from CIFAR-10 [26], respectively.

However, we have not yet specified (1) how to define the “good” partitions,
(2) how to make m finite and (3) how to have a single parameter γ that controls
granularity. Thanks to Pitsianis et al. [2], we can answer these questions with
an energy function.

Definition 2. The Hamiltonian energy of a partition ω is defined as:

H(ω) = −
|ω|∞∑
k=1

∑
i<j

w+
ij 1ωi=ωj=k︸ ︷︷ ︸

ha

+ γ

|ω|∞∑
k=1

∑
i<j

w−
ij 1ωi=k︸ ︷︷ ︸

hr

. (1)

3 e.g., k-means [13] requires the number of clusters k.
4 e.g., Leiden and Louvain methods [25] require a resolution parameter γ ∈ [0,∞).
5 Selection of good parameter values, such as k or γ.
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Fig. 1: Configuration lineage and energy landscapes. (a)&(b) Configuration lin-
eages: γ controls hierarchical granularity from coarse to fine. (c)&(d) Energy
landscapes: Axes show attraction ha and repulsion hr.

where w+
ij ≥ 0 and w−

ij ≥ 0 are pairwise attraction and repulsion weights, larger
for similar and dissimilar pairs, respectively. These weights can be derived from
graph-based similarities (e.g., kNN with stochastic reweighting [2]), learned em-
beddings, or application-specific affinity measures. γ ∈ [0,∞) is the resolution
parameter controlling granularity: small γ favors coarse groupings (attraction
dominates), large γ favors fine partitions (repulsion dominates). A partition is
considered better than another if its energy is lower.

Proposition 2. When w+
ij and w−

ij are derived from graph-based similarities
(i.e., edge weights of a graph), minimizing H(ω) is equivalent to maximizing the
modularity as defined in Blondel et al. [27].

Actually, the implementation of Pitsianis et al. [2] (also the implementation
of this paper), when γ is fixed, is nothing big but the Leiden method [25] on k
nearest neighbor graph, with some minor modifications. As the graph is sparse
with a small k, the runtime is essentially linear in n, i.e., O(n). However, it can
be exhaustive to search γ ∈ [0,∞) for “best” configurations. Luckily, Pitsianis
et al. [2] provides a solution called Parallel-DT. Parallel-DT is guaranteed to
find m+1 segments of (0,∞) with dominant Ωi at the division points, and such
segments are called plateaus. Combining all Ωi, we get the desired Ω.

We provide two illustrative examples of such Ω on the energy landscapes
(2D plots of ha and hr) in Figs. 1c and 1d on the MNIST [28] and WHU-Hi-
Hanchuan [29] datasets, respectively. These two examples also demonstrate (1)
validity and high accuracy of the configuration framework by ground truth (GT)
lying in the front-end and high accuracy (Acc) values, and (2) an example of the
plateaus.

Design and proofs of the whole Ω framework, including Parallel-DT, are not
our focus, and we refer the reader to Liu et al. [1] and Pitsianis et al. [2] for more
details.

3.2 Brain-Inspired Properties of Configurations

The mathematical structure of configurations naturally embodies the three cog-
nitive desiderata from infant studies. We demonstrate how unsupervised organi-
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zation, hierarchical flexibility, and novelty sensitivity emerge directly from the
attraction–repulsion dynamics and energy minimization framework.

Hierarchical Organization. Infants organize stimuli at multiple levels, in-
cluding superordinate (animals vs. vehicles) and basic-level (cats vs. dogs), with-
out labels [3], [4]. Configurations capture this through γ-controlled transitions:
low γ favors attraction (w+

ij dominates), yielding coarse superordinate clusters;
high γ favors repulsion (w−

ij dominates), creating fine basic-level distinctions. The
same input yields different organizations through a single parameter, mirroring
infant flexibility without requiring exhaustive clustering runs.

Stability Plateaus. Infants form stable categorical boundaries that per-
sist across stimulus variations [5]. Configuration plateaus—intervals where par-
tition ωi remains optimal—provide the computational analog. Parallel-DT finds
segments of γ where specific configurations minimize H(ω), indicating robust
organizational scales.

Energy-Based Novelty Detection. Novel stimuli disrupt infant categor-
ical expectations [17]. The Hamiltonian energy H(ω) provides this mechanism:
dissimilar items increase both attraction costs (ha) and repulsion costs (hr),
yielding higher energy regardless of γ. This intrinsic novelty signal emerges from
the same similarity principles driving organization.

Merge-Split Dynamics. Unlike rigid hierarchical trees, configurations per-
mit flexible transitions: merges and splits occur when γ increases or decreases
(repulsion breaks clusters or attraction combines groups). These represent se-
mantically coherent reorganization, reflecting context-dependent categorization
in cognitive development [30]. An illustrative example of merge-split dynamics
is shown in Fig. 2a.

This establishes configurations as a principled computational model where
cognitive behaviors emerge from mathematical structure rather than engineering.
The energy framework unifies unsupervised organization, hierarchical selectivity,
and novelty sensitivity through attraction–repulsion dynamics. Further empirical
validation of these properties is presented in Section 5.

Ωi Ωj

C1

C2

D1

D2

D3

Split

Merge

(a) Merge-split dynamics (b) Ordinary versus mosaic heatmap

Fig. 2: (a) A schematic example of merge and split happens as γ increases from
i to j. (b) Comparison of normal and mosaic heatmap for a confusion matrix.
Mosaic heatmap provides more intuitive visualization with interpretable diagonal
structure, when cases like a split of 1 into 1 and 2 happen.
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4 The mheatmap Framework

Before moving on to the experiments, we first address a critical implementation
challenge: how to fairly evaluate “goodness” when comparing partitions across
different resolutions. In the configuration framework, partitions naturally exhibit
unequal cluster numbers, merge-split dynamics (as introduced in Fig. 2a), and
arbitrary label assignments—characteristics that render traditional metrics like
accuracy and ARI [22] inadequate. Even standard visualizations such as confu-
sion matrices fail to capture the semantic meaningfulness of these transitions.

4.1 Mosaic Heatmap Visualization

To address visualization limitations, we introduce the mosaic heatmap—a pro-
portional visualization that encodes overlap information through both geometric
and color properties. Let Y = {Yi} be ground-truth categories and Ĉ = {Ĉj} be
predicted clusters 6, with overlap counts Nij = |Yi ∩ Ĉj |, row sums ri =

∑
j Nij ,

and column sums cj =
∑

i Nij . The mosaic layout displays:
– Cell width: proportional to Nij/ri (fraction of ground-truth category i)
– Cell height: proportional to Nij/cj (fraction of predicted cluster j)
– Cell color: proportional to Nij (magnitude, as in ordinary heatmaps)

As demonstrated in Fig. 2(b), the mosaic heatmap provides superior intu-
ition compared to standard rectangular heatmaps, particularly when splits occur
(e.g., cluster 1 splitting into clusters 1 and 2), revealing interpretable “diagonal”
structure by rejoining 1 and 2 into a near square.

4.2 RMS Alignment Algorithm

Traditional alignment methods, including Hungarian algorithms and their vari-
ants, are not designed to handle the presence of unequal cluster numbers and
merge-split dynamics. Motivated by this limitation, we developed the Reverse
Merge/Split (RMS) algorithm, which optimizes the visual “diagonal” of the mo-
saic heatmap by cluster reassignments considering merge-split dynamics.

The RMS algorithm addresses the fundamental challenge of aligning par-
titions with different granularities while preserving the semantic coherence of
merge-split transitions. Due to space constraints and our focus on brain-inspired
clustering, we omit detailed algorithmic descriptions, referring readers to our
implementation in Section 4.3.

Fig. 3: One case of clustering versus GT
before and after RMS alignment.

Fig. 3 demonstrates an example
of RMS effectiveness on the Salinas
dataset [31]: after RMS alignment,
a clear diagonal structure emerges
in the mosaic heatmap, dramatically
improving cluster-category correspon-
dence and enabling fair evaluation of
brain-inspired clustering systems.
6 Just for one to notice, Y and Ĉ can also be any two arbitrary partitions.
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4.3 Implementation and Availability

We have packaged the mosaic heatmap visualization and RMS alignment into a
comprehensive Python framework, mheatmap, available at https://github.com/
qqgjyx/mheatmap. The package provides intuitive APIs for researchers working
with multi-resolution clustering systems and can be expanded to futher uses.

All clustering metrics reported in our experiments (Section 5) are calculated
after RMS alignment to ensure fair comparison between configurations and base-
line methods, accounting for the semantic meaningfulness of merge-split dynam-
ics rather than treating them as arbitrary reassignments.

5 Experiments

We evaluate configurations’ brain-inspired clustering capabilities across real-
world datasets, focusing on the three cognitive abilities from our framework:
hierarchical organization, novelty sensitivity, and flexible adaptation. We pro-
vide only unlabeled inputs to clustering algorithms, using ground-truth labels
solely for evaluation.

Datasets: We evaluate on datasets with hierarchical structure: CIFAR-10
Subset, Infant Study Stimuli from developmental studies [3], ImageNet Hierar-
chical [32], and Salinas data. Image embeddings use pre-trained ViT-B/16 [33].

Metrics & Baselines: We evaluate using standard metrics (ARI, NMI) and
brain-inspired measures: hierarchical alignment, novelty discrimination (ROC-
AUC using energy scores), and dynamic adaptation (1/ARI for reassignment
sensitivity). Baselines include k-means, GMM, spectral clustering, agglomerative
clustering, DBSCAN, and community detection methods [13], [14], [16], [25], [34].
All methods use identical embeddings for fair comparison.

Table 1 shows configurations achieve superior performance across datasets
while providing hierarchical structure.

Table 1: Clustering performance (ARI/NMI) across datasets and methods.

Method Salinas InfantS ImageNet

ARI NMI ARI NMI ARI NMI

K-means 0.45±0.04 0.55±0.03 0.22±0.03 0.32±0.02 0.18±0.03 0.28±0.02
GMM 0.85±0.02 0.88±0.01 0.25±0.02 0.35±0.02 0.21±0.02 0.31±0.02
Spectral 0.50±0.03 0.60±0.02 0.26±0.02 0.36±0.02 0.22±0.02 0.32±0.02
Agglomerative 0.43±0.04 0.53±0.03 0.21±0.03 0.31±0.02 0.17±0.03 0.27±0.02
DBSCAN 0.38±0.06 0.48±0.04 0.19±0.04 0.29±0.03 0.15±0.04 0.25±0.03
Mean Shift 0.41±0.03 0.51±0.03 0.20±0.02 0.30±0.02 0.16±0.03 0.26±0.02
Birch 0.39±0.04 0.49±0.03 0.18±0.03 0.28±0.02 0.14±0.03 0.24±0.02
Configurations 0.92±0.01 0.94±0.01 0.55±0.02 0.58±0.02 0.62±0.02 0.68±0.01

Configurations achieve outstanding performance: Salinas [ARI = 0.92, NMI
= 0.94], Infant Stimuli [ARI = 0.55, NMI = 0.58], and ImageNet [ARI = 0.62,
NMI = 0.68], consistently outperforming baselines by 7-49 percentage points.

https://github.com/qqgjyx/mheatmap
https://github.com/qqgjyx/mheatmap
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Notably, the strong performance on infant stimuli validates that configurations
discover the same categorical structure infants learn to recognize, confirming
their cognitive relevance.

Infant Behavior Validation: Following Quinn and Eimas [3], we test meth-
ods on internal cues (details like eyes, noses), external cues (outer shape of
face/body), or both. This directly mirrors infant studies where 3-4-month-olds
showed poor categorization with isolated cues but strong performance with com-
bined cues. Table 2 compares computational methods with infant behavior.

Table 2: ARI scores across cue conditions compared with developmental findings.

Method Internal External Both

K-means 0.18±0.02 0.22±0.02 0.55±0.03
GMM 0.21±0.01 0.25±0.02 0.58±0.02
Spectral Clustering 0.19±0.02 0.24±0.02 0.56±0.02
Agglomerative 0.20±0.02 0.23±0.02 0.57±0.03
Configurations 0.15±0.01 0.19±0.01 0.65±0.02

Infant behavior (Quinn et al., 1996):
Infant 3-4 months Poor Poor Good

Recent computational validation:
ML prediction models [35] 0.18±0.02 0.23±0.02 0.61±0.02
Early word learning models [36] 0.16±0.01 0.21±0.01 0.58±0.02

Results show configurations best align with infant behavior: poor perfor-
mance on isolated cues (ARI = 0.15-0.19) but strong performance when cues
combine (ARI = 0.65). This mirrors infant patterns exactly—struggling with
isolated features but excelling with integrated information. The substantial per-
formance gain (0.15 → 0.65) validates that configurations capture infant-like
dependence on holistic perceptual information for categorization.

γ

ARI

Superordinate
Basic-level

Ω0.3Ω1.4

(a) Hierarchical Selectivity

Hγ

%
Normal

2.3±0.8

Novel

4.7±1.2

(b) Novelty Detection

t

1/ARI
K-means
Spectral
Config.

Split Merge

(c) Dynamic Evolution

Fig. 4: Brain-inspired capabilities of configurations. (a) Superordinate categories
emerge at low γ (0.2–0.6), basic-level at high γ (1.2–1.8). Plateaus show stable
organizational scales. (b) Energy distributions distinguish novel from familiar
stimuli (87% AUC), paralleling infant habituation. (c) Configurations achieve
stable 35% lower 1/ARI than other two baselines during category evolution.
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Brain Capabilities: Fig. 4 demonstrates configurations’ three key cognitive
abilities: hierarchical selectivity, novelty detection, and dynamic adaptation.

Results confirm configurations capture key cognitive abilities: hierarchical
organization emerges naturally, novelty detection achieves 87% AUC paralleling
infant habituation, and dynamic adaptation shows obviously better stability
than other two baselines.

6 Discussion and Conclusion

Our results demonstrate that configurations capture fundamental cognitive cat-
egorization principles: unsupervised organization, hierarchical flexibility, and
novelty sensitivity. Unlike rigid dendrograms, configurations enable context-
dependent transitions between organizational scales, mirroring infant flexibility.
The energy-based novelty detection parallels habituation responses [37], suggest-
ing unsupervised clustering naturally encodes exploration–exploitation trade-offs
fundamental to cognitive development [38]–[40]. This approach enables systems
that discover hierarchical structure without supervision and naturally detect
novel patterns—essential for robust AI.

The mheatmap framework addresses critical evaluation gaps in dynamic clus-
tering. Traditional metrics fail to handle unmatched cluster numbers, arbitrary
labeling, and merge-split dynamics. Our proportional heatmap visualization and
RMS alignment algorithm enable fair comparison between configurations and
baselines [41], revealing organizational patterns invisible to standard confusion
matrices and enabling rigorous evaluation of brain-inspired clustering behaviors.

Limitations include: (1) lack of neural-level biological realism—future work
should explore Hebbian plasticity and neural architectures implementing con-
figuration dynamics [42]–[44], (2) limited scalability—testing on larger datasets
and broader cognitive domains beyond vision, and (3) developmental model-
ing—capturing how cognitive abilities emerge over time.

Applications include educational technology with cognitively natural hierar-
chies [45], human-computer interfaces using brain-inspired organization, devel-
opmental robotics for unsupervised exploration [46], cognitive modeling tools for
understanding development [47], and foundational components for AI.

This work provides a perspective on configurations as computational mod-
els of early cognitive categorization, bridging cognitive science and ML. The
mheatmap framework enables rigorous evaluation of dynamic clustering, reveal-
ing how configurations naturally exhibit hierarchical organization, novelty sen-
sitivity, and flexible categorical boundaries—fundamental aspects of cognition
elusive in artificial systems [48].

We showcase the energy-based formulation unifies similarity-based organiza-
tion, novelty detection, and hierarchical flexibility through attraction–repulsion
dynamics. By linking finite-resolution clustering to developmental psychology,
we provide both conceptual insights and practical tools for brain-inspired AI.
Future work should explore neural implementation, scale to larger domains, and
integrate online learning to develop systems exhibiting the elegant, adaptive
learning capabilities observed in early cognitive development.
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