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Graph-affiliated Unsupervised Segmentation
Assisted Simple Neural Network

Abstract—High-throughput 16S rRNA-seq data, comple-
mented by detailed cultivation information, constitutes a critical
resource in bacterial research with promising implications for
biomedical applications such as fecal microbiota transplanta-
tion. However, the inherent high dimensionality and substantial
costs associated with 16S rRNA-seq data constrain its full
utility. In this paper, we introduce a novel approach—graph-
affiliated unsupervised segmentation-assisted simple neural net-
work (GASNN)—designed to analyze 16sRNA-seq data effi-
ciently. In a proof-of-concept application involving the prediction
of cultivation media temperature, the GASNN model achieved
significant performance enhancements over a traditional simple
neural network (SNN). Further experiments across various tasks
consistently demonstrated that GASNN improves the perfor-
mance of SNN models. Nevertheless, a notable limitation of
the proposed approach is that its benefits may diminish as the
network architecture deepens, thereby impeding its ability to
reveal the intrinsic manifold structure of the data.

Index Terms—16S rRNA-seq, bacterial cultivation, unsuper-
vised segmentation, manifold learning

I. INTRODUCTION

THE technique of 16S ribosomal RNA (16S rRNA) se-
quencing is a cornerstone technique in microbial ecology

and molecular microbiology, offering critical insights into
the structure and function of microbial communities. The
16S rRNA gene is highly conserved across bacterial species,
making it an ideal molecular marker for the identification
and phylogenetic analysis of bacteria. Its universal presence
in all bacteria allows for the classification of microbes in a
given sample without the need for culturing, which can be
a time-consuming and selective process. Consequently, 16S
rRNA sequencing has become a powerful tool in microbial
diversity studies and an essential component of metagenomic
approaches to understanding microbial ecosystems [8], [19].

The application of 16S rRNA sequencing extends far be-
yond simple bacterial identification. It is now a founda-
tional method for microbial community profiling, allowing
researchers to uncover the diversity of bacterial species in
various environmental niches, including soil, water, and the
human gut. The ability to sequence and catalog these com-
munities at high throughput has enabled significant advances
in microbial ecology, including the discovery of novel species
and the characterization of complex microbial interactions [2].
In clinical settings, 16S rRNA sequencing has also facilitated
the analysis of the human microbiome, revealing its associ-
ation with health conditions and providing insights into the
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therapeutic potential of microbiome-based interventions, such
as fecal microbiota transplantation (FMT) [2].

Despite the successes of 16S rRNA sequencing in bacterial
identification and community profiling, challenges remain in
its application for more complex tasks, such as predicting
cultivation conditions. While species-level classification from
16S rRNA sequences has achieved remarkable accuracy, as
high as 90% in some studies, predicting cultivation parameters
like media temperature based solely on 16S rRNA data is an
area that remains underexplored [9]. Nevertheless, the growing
availability of databases such as DSMZ and publicly released
datasets from NIH provide a rich source of cultivation media
information that, when integrated with 16S rRNA sequencing
data, holds the potential to enable novel predictive models
in microbial cultivation [19]. Such advancements could have
significant implications for optimizing bacterial growth con-
ditions and improving the scalability of microbial applica-
tions, particularly in fields like biotechnology and personalized
medicine.

In this study, we explore the application of machine learn-
ing techniques for predicting cultivation media temperature
from 16S rRNA sequencing data. To this end, we begin by
investigating traditional methods, including Random Forest
and Multi-Layer Perceptron (MLP) models. In our initial
regression experiments, we observe that a Random Forest
model yields an R2 value of approximately 0.55, indicating
moderate predictive accuracy for media temperature. Similarly,
a MLP with three hidden layers (3LP) achieves a similar R2 of
around 0.5, which is not satisfactory for practical applications.

However, when we introduce a novel approach—combining
the feature data with multiple clustering configurations, each
optimized at different resolutions—we observe a remark-
able improvement. These multiple configurations are obtained
through a process involving k-Nearest Neighbors (kNN),
stochastic graph t-SNE (SGtSNE), and multi-configuration
optimized clustering (BlueRed) [16]. When this series of
transformations is added as an unsupervised layer to the
3LP model, the regression task’s performance dramatically
improves, achieving an R2 of approximately 0.85. This sig-
nificant enhancement suggests that the combination of feature
data and the diverse clustering configurations allows the model
to capture the intrinsic manifold structure of the data, leading
to more accurate predictions of media temperature at an early
stage of the neural network’s processing pipeline.

To assess the generalizability of this approach, we apply
the graph-affiliated unsupervised segmentation-assisted simple
neural network (GASNN) to other well-established bench-
marking tasks. In the MNIST dataset, the introduction of the
unsupervised layer leads to an impressive clustering result,
which is directly linked to the improvement in classification



JOURNAL OF ???, VOL. ???, NO. ???, ??? 2

accuracy [4]. Although the results on the ImageNet dataset
are less visually interpretable, we observe the robustness of
the model, contributing to improved performance [3]. This
suggests that the ability of GASNN to incorporate unsuper-
vised graph-based features may have broad applicability, not
only for microbial cultivation predictions but also for other
complex, high-dimensional tasks.

II. METHODOLOGY

A. Feature Data Preprocessing

Our dataset was acquired from two primary sources—
DSMZ and NIH—and includes extensive information on bac-
terial strains, cultivation conditions, and associated metadata
such as temperature and 16S rRNA sequences. While the
database itself contains multiple tables (e.g., STRAINS, ME-
DIA, SOLUTIONS, INGREDIENTS, STEPS, and GAS)
with fields covering everything from taxonomic classification
to specific cultivation protocols, we focus on two critical
attributes for this study: the 16S rRNA gene sequences and
the cultivation media temperature. The data was obtained
through publicly available records provided by DSMZ [5] and
NIH [14].

In total, we identified approximately 65,000 records where
both 16S rRNA data and cultivation media temperature values
were available. Within these records, the temperature values
typically range from psychrophilic to thermophilic conditions,
and were normalized to maintain consistency in subsequent
modeling steps. The 16S rRNA sequences are strings of vary-
ing lengths (primarily between 500 and 1,500 nucleotides),
reflecting the heterogeneity of bacterial strains in the database.

To transform the raw 16S rRNA sequences into a feature
vector suitable for machine learning models, we employed a
k-mer-based approach [6], [11], which is commonly used in
genomic analyses. The k-mer method quantifies the frequency
of all possible substrings (k-mers) of length k in a sequence.
For a given sequence S = {s1, s2, . . . , sN}, where each si ∈
{A, T,C,G} for nucleotide sequences, the frequency of each
unique k-mer m is counted as:

fm = count(m,S),

where count(m,S) is the number of times the k-mer m
appears in the sequence S. The feature vector for each
sequence is composed of the counts of each possible k-mer
in the sequence. The k-mer frequency matrix for the entire
dataset is constructed by stacking the feature vectors of all
individual sequences.

This transformation results in a high-dimensional feature
matrix, where each sequence is represented by a vector of k-
mer frequencies. This approach, while effective for capturing
sequence composition, can sometimes lead to a loss of posi-
tional information, which is an inherent tradeoff when using
k-mer based methods.

Before proceeding to model training, we performed several
quality control steps. First, we removed any rows containing
missing or corrupted values. We then discarded any features
that exhibited zero variance, as they provide no discriminatory
power for the models. After these cleaning steps, we were

left with 9,862 samples, each described by 4,216 features.
Recognizing that many remaining features were still redundant
or sparsely informative, we further applied a univariate feature
selection strategy to retain only the top 1,000 features for
training purposes. This step not only reduces computational
overhead but also helps mitigate the risk of overfitting.

To ensure all features were on a comparable scale, we
employed a standard scaling process [15] that transforms each
feature by subtracting the mean and dividing by the standard
deviation:

xscaled =
x− µ

σ
,

where x is the original feature value, µ is the mean of that
feature across all samples, and σ is its standard deviation.
Finally, we split our dataset into a training set (80%) and
a test set (20%) to facilitate performance assessment and
minimize the risk of overfitting. This comprehensive pre-
processing pipeline—covering data cleaning, dimensionality
reduction, and normalization—ensured that the subsequent
modeling steps were built on a robust and consistent feature
representation of the 16S rRNA sequences and their corre-
sponding temperature values.

B. Graph-Affiliated Unsupervised Segmentation

We employ a graph-affiliated unsupervised segmentation
approach to enhance the feature data representation. The steps
involved in this process are k-Nearest Neighbors (kNN) graph
construction, stochastic graph t-SNE (SGtSNE) embedding,
and modularity-based clustering with a resolution parameter.
Specifically, we adopt the Leiden algorithm for community
detection and draw on a multi-configuration methodology
inspired by the unpublished “BlueRed” framework developed
by Xiaobai Sun et al. (2025) at Duke University. By leveraging
these techniques together, we obtain an enriched set of cluster
labels at multiple resolution scales, thereby augmenting the
original feature data for subsequent machine learning tasks.

1) Step 1: k-Nearest Neighbors (kNN): We begin by con-
structing a k-nearest neighbors (kNN) graph from the 16S
rRNA feature data, where each data point is connected to its
k nearest neighbors based on a specified distance metric. We
use kNN graphs for non-uniformly distributed data and latent-
manifold structures, where a modest integer value for k is
sufficient to capture the variance, maintain local connectivity,
and allow information to propagate along the geodesic path.
This approach avoids overly dense or disconnected graphs that
might arise from other types of graph construction, such as
rNN graphs.

2) Step 2: Stochastic Graph t-SNE (SGtSNE): Next, we
apply stochastic graph t-SNE (SGtSNE), a variation of t-SNE
that operates directly on graph-based data. This method is
especially useful for preserving local similarities and capturing
the manifold structure of the data. The conversion from
distance d(x, y) to the edge weight w(x, y) in SGtSNE is done
as follows:

w(x, y) =
1

λ
exp

(
−d2(x, y)

2σ2
x

)
, x, y ∈ X, (x, y) ∈ E(G)
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where λ is a normalization parameter that adjusts the weight
range. The non-linear scaling with σx is chosen to be adaptive
and is determined by the following sparse equation:

∑
y:(x,y)∈E

exp

(
−d2(x, y)

2σ2
x

)
= λ, x ∈ X

This ensures that the weights are appropriately scaled.
After these transformations, the adjacency matrix is column-
stochastic. SGtSNE provides a lower-dimensional embedding
that preserves the neighborhood structure of the data, allowing
for more effective clustering in the next steps.

3) Step 3: Leiden Algorithm with a Resolution Parameter:
We then perform community detection using the Leiden al-
gorithm [1], [18], which introduces a resolution parameter γ.
The clustering quality is measured by a modularity function
that balances internal connectivity within communities against
external connectivity. In a Hamiltonian formulation, the cor-
responding energy function H(S) can be expressed as:

H(S) =
∑
i,j∈V

Aij δ(Si, Si)− γ
∑
i,j∈V

Aij δ(Si, Sj),

where Aij is the weight of the edge between nodes i and
j, δ(Si, Sj) is the Kronecker delta function (1 if i and j
belong to the same community, 0 otherwise), and γ is the
resolution parameter controlling the granularity of the detected
communities.

4) γ-Transformation and Multi-Configuration Methodol-
ogy: Inspired by the “BlueRed” framework (Xiaobai Sun et
al., 2025, unpublished), we consider multiple configurations of
the Leiden algorithm by varying γ systematically, rather than
relying on a single fixed resolution. To handle the resolution
problem more smoothly, we map γ ∈ [0,∞) to a bounded
parameter θ ∈ [0, 1] using a sigmoid transformation:

θ(γ) =
1

1 + e−α(γ−β)
,

where α and β are parameters that control the shape of the
transformation. This mapping helps avoid unbounded param-
eter sweeps and provides a more stable range for identifying
meaningful clusters.

Moreover, to prioritize finer community structures during
optimization, we may employ a descending triangular weight-
ing function w(θ) defined by:

w(θ) =

{
1− 2θ if 0 ≤ θ ≤ 0.5,

2θ − 1 if 0.5 < θ ≤ 1.

The combined approach yields multiple stable clustering
solutions by scanning different values of θ. These solutions
collectively form a multi-configuration result set, enabling
deeper insights into the data’s hierarchical structure.

5) Overall Process and Benefits: By integrating these three
steps—kNN graph construction, SGtSNE embedding, and
modularity-based clustering with a resolution parameter (im-
plemented via Leiden and further extended by the “BlueRed”
multi-configuration concept)—we obtain a powerful feature

augmentation process. This methodology enriches the subse-
quent machine learning models by uncovering latent mani-
fold structure and providing multiple, complementary cluster
assignments. As a result, the models become more robust
and accurate in tasks such as predicting cultivation media
temperature, benefiting from the enhanced representation and
multi-resolution perspective offered by the proposed pipeline.

C. Model Architecture

In this section, we describe the core predictive model
that builds upon the multi-configuration clustering outputs
generated by the graph-affiliated unsupervised segmentation
(Section II-B). Our primary objective is to predict cultivation
media temperature from 16S rRNA-derived features, aug-
mented by the multiple cluster assignments. To achieve this,
we employ a simple multi-layer perceptron (MLP) comprising
three fully connected layers (3LP). Figure 1 provides a high-
level schematic of the complete pipeline, where the augmented
feature data serve as input to the 3LP.

1) Input Augmentation with Multi-Configuration Clusters:
Let x ∈ Rd be the original feature vector (e.g., the k-mer
counts or any preprocessed representation of the 16S rRNA
data). From the graph-affiliated unsupervised segmentation, we
obtain a set of multiple cluster assignments,

{ω1, ω2, . . . , ω|Ω|},

where ωi corresponds to the i-th clustering configuration, and
|Ω| is the total number of configurations. Each configuration
ωi assigns a cluster label to every sample. We treat these nu-
meric cluster labels as additional features (after standardizing
each configuration independently), resulting in an augmented
feature vector

z =
(
x⊤, ω1, ω2, . . . , ω|Ω|

)⊤ ∈ R d+|Ω|.

Although one might consider one-hot encoding of the cluster
labels, our approach appends the numeric labels directly, rely-
ing on the MLP to learn appropriate transformations through
its trainable weights. This design choice preserves potential
hierarchical relationships among different configurations and
simplifies the model input.

2) Three-Layer Perceptron (3LP) Design: We opt for a
simple neural network with three fully connected layers (3LP),
each followed by a Rectified Linear Unit (ReLU) activa-
tion [13] and a Dropout layer [17] to mitigate overfitting.
Concretely, the layer dimensions are:

(1) Input Layer: d+ |Ω| −→ 256,

(2) Hidden Layer: 256 −→ 128,

(3) Hidden Layer: 128 −→ 64,

and finally an output neuron (or small output layer) for
regression. Each fully connected layer can be written in the
form:

h(l) = ReLU
(
W(l) h(l−1) + b(l)

)
,

where h(l−1) denotes the output from the preceding layer (or
the augmented input z for l = 1), W(l) and b(l) are trainable
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weight matrices and bias vectors, respectively. After each
ReLU activation, a Dropout function Dropout(p) randomly
zeroes out a fraction p of the units to reduce co-adaptation of
feature detectors [17]:

h
(l)
drop = m ⊙ h(l), mi ∼ Bernoulli(1− p),

where ⊙ denotes element-wise multiplication and m is a
random mask vector with entries drawn from the Bernoulli
distribution.

3) Regression Output and Training Objective: For media
temperature prediction, the final (fourth) layer is a single linear
neuron:

ŷ = w⊤ h
(3)
drop + b,

where h
(3)
drop is the output of the third Dropout layer, w

and b are the trainable parameters of the output layer, and
ŷ is the predicted temperature value. We train the model by
minimizing the Mean Squared Error (MSE) loss:

LMSE(ŷ, y) =
1

N

N∑
i=1

(
ŷi − yi

)2
,

where yi is the ground truth temperature for sample i, ŷi is
the model prediction, and N is the number of training sam-
ples. Optimization is performed using standard gradient-based
methods (e.g., Adam [10]), and early stopping or additional
regularization can be employed to prevent overfitting.

4) Overall Architecture and Benefits: Figure 1 shows a
simplified depiction of our pipeline. The lower portion illus-
trates the graph-affiliated unsupervised segmentation, which
generates multiple cluster configurations that are appended
to the original feature vectors. The upper portion shows the
three-layer perceptron, which processes the augmented input
and outputs the predicted temperature. By providing the 3LP
with cluster-based features at various resolutions, the model
can capture latent manifold structures that might otherwise
remain hidden in raw 16S rRNA-derived features. Despite its
simplicity, this design already yields a significant improvement
over baseline models (e.g., single-layer MLPs or Random
Forests), demonstrating the efficacy of augmenting the original
feature space with multi-configuration clustering information.

D. Evaluation Metrics

Our primary task is the regression-based prediction of
cultivation media temperature from 16S rRNA data, and we
therefore employ the coefficient of determination (R2) as
the principal metric for model evaluation. In addition to
regression, we also investigate the performance of our method
in a classification setting. In this context, we visualize the
classification results using confusion matrix heatmaps and
quantify accuracy with a series of standard metrics, including
Overall Accuracy (OA), Average Accuracy (AA), and the
Adjusted Rand Index (ARI).

1) Regression: Coefficient of Determination (R2): For re-
gression tasks (e.g., predicting media temperature), we use the
coefficient of determination:

R2 = 1−
∑N

i=1

(
yi − ŷi

)2∑N
i=1

(
yi − ȳ

)2 ,

Fig. 1. Illustration of the proposed architecture. The Simple Neural Network
(3LP in this case) is shown at the top, with three fully connected layers (256,
128, and 64 neurons, respectively), each followed by ReLU and Dropout.
The Graph-Affiliated Multiple-Configurations Unsupervised Segmentation is
depicted at the bottom, providing multiple clustering configurations that, once
appended to the original feature vectors, serve as the input to the 3LP. This
pipeline enriches the model’s input representation and helps to capture latent
manifold structures in the data.

where yi is the ground truth for sample i, ŷi is the corre-
sponding model prediction, ȳ is the sample mean of the target
variable, and N is the total number of samples. An R2 value
of 1.0 indicates a perfect fit, whereas values close to 0 suggest
that the model performs similarly to a simple mean-based
predictor.

2) Classification: Confusion Matrix and Accuracy Met-
rics: To evaluate classification performance, we generate a
confusion matrix heatmap that visualizes how the model’s
predictions compare with the true labels. Each row of the
matrix corresponds to the actual class, and each column
corresponds to the predicted class. From this matrix, we derive
the following metrics:

• Overall Accuracy (OA): The proportion of correctly
classified samples out of the total number of samples:

OA =
1

N

N∑
i=1

1
(
ŷi = yi

)
,

where 1(·) is the indicator function that equals 1 when
the condition is true and 0 otherwise.

• Average Accuracy (AA): The mean of the per-class ac-
curacies, placing equal emphasis on each class, regardless
of class size. For C classes, let accc be the accuracy for
class c. Then,

AA =
1

C

C∑
c=1

accc.

3) Adjusted Rand Index (ARI): The Adjusted Rand Index
(ARI) [7] is a popular measure for assessing similarity between
two clusterings (or label assignments). It corrects the Rand
Index (RI) for chance grouping of elements. Let nij denote
the number of elements that are assigned to cluster i in the
ground truth and to cluster j in the predicted assignment. Let
ai =

∑
j nij be the total number of elements in cluster i

(ground truth), and bj =
∑

i nij the total number in cluster j
(predicted). The ARI can be expressed as:
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Fig. 2. Comparison of temperature prediction performance across models. From left to right: baseline Multi-Layer Perceptron (3LP), GASNN-RMS, and
GASNN-combined. Each plot shows predicted versus true temperature values on the test set, with the diagonal line representing perfect predictions.

ARI =

∑
i,j

(
nij

2

)
−

∑
i (

ai
2 )

∑
j (

bj
2 )

(N2 )

1
2

[∑
i

(
ai

2

)
+

∑
j

(
bj
2

)]
−

∑
i (

ai
2 )

∑
j (

bj
2 )

(N2 )

,

where
(
n
2

)
= n(n−1)

2 , N is the total number of elements
(samples), and the denominator normalizes for both the range
of the index and random labeling effects. The ARI ranges from
−1 to 1, where 1 indicates a perfect match between predicted
and true labels, and values near 0 indicate random labeling.

4) Interpretation and Comparison: The choice of metric
depends on the nature of the task. For the media temperature
prediction, we rely on R2 to assess how well the model
captures variance in the target variable. In potential classi-
fication tasks (e.g., if we transform temperature ranges into
discrete categories or test on standard datasets like MNIST),
we supplement our evaluation by examining the confusion
matrix and reporting metrics such as OA, AA, and ARI.
This suite of metrics allows for a comprehensive view of
model performance across both regression and classification
paradigms.

III. EXPERIMENTS AND RESULTS

A. Regression on Cultivation Media Temperature

1) Dataset Description: The DSMZ 16S rRNA dataset
comprises sequences ranging from approximately 500 to 1500
nucleotides in length. After applying k-mer transformation
with k=4 to the 16S rRNA sequences, the dataset was reduced
to dimensions of (65,023, 29,071). We performed a train-test
split with 20% allocated for testing, resulting in 52,018 train-
ing samples and 13,005 test samples. The data was normalized
using a robust scaler, followed by variance filtering and feature
selection to retain the 1,000 most informative features.

Our experimental evaluation focused on predicting optimal
temperature values for cultivation media. Table I presents
a comprehensive performance comparison across different

TABLE I
PERFORMANCE COMPARISON OF MODELS FOR TEMPERATURE

PREDICTION

Model R2 Score Mean Squared Error
Random Forest 0.39 17.75
Multi-Layer Perceptron (3LP) 0.41 17.73
GASNN-RMS 0.76 7.13
GASNN-combined 0.90 3.03

models. The baseline models, Random Forest and Multi-
Layer Perceptron (3LP), demonstrated moderate performance
with R2 scores of 0.39 and 0.41, respectively. Our proposed
GASNN variants exhibited substantial improvements, with
GASNN-RMS achieving an R2 score of 0.76 and GASNN-
combined further excelling with a score of 0.90. The mean
squared error showed marked improvement, decreasing from
approximately 17.7 for baseline models to 3.03 for GASNN-
combined.

Figure 2 illustrates the comparative prediction performance
across models through scatter plots of predicted versus true
temperature values on the test set. Points aligned closer to
the diagonal line indicate higher prediction accuracy. The
visualization demonstrates a clear progression in prediction
quality from left to right, with GASNN-combined exhibiting
the most concentrated clustering around the ideal prediction
line, substantiating its superior performance.

2) Progressive Feature Integration Analysis: To under-
stand the contribution of multiple clustering configurations
in GASNN-combined, we conducted an ablation study by
progressively incorporating clustering configurations into the
feature set. Figure 3 illustrates how the prediction error
(MSE) changes as additional configurations are integrated. The
introduction of the first configuration results in a dramatic
reduction in MSE, demonstrating the significant impact of
initial graph-based features. Subsequent configurations show a
generally decreasing trend in prediction error, albeit with some
fluctuations, suggesting complex interactions between different
clustering configurations. While the overall trend indicates
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Fig. 3. Progressive change in prediction performance (measured by Mean
Squared Error) as additional clustering configurations are integrated into
GASNN-combined. The overall decreasing trend with fluctuations demon-
strates the complex interaction between multiple graph-based feature repre-
sentations.

TABLE II
PERFORMANCE COMPARISON OF MODELS FOR MNIST CLASSIFICATION

Model Accuracy
Random Forest 0.9692
Multi-Layer Perceptron (3LP) 0.9690
GASNN-RMS 0.9890

improved performance with more configurations, the non-
monotonic nature of the improvements highlights the intricate
relationship between different graph-based representations and
their collective impact on prediction accuracy.

B. Benchmarking Tasks

1) MNIST Classification: To validate our approach on a
standard benchmark dataset, we evaluated GASNN on the
MNIST handwritten digit classification task [12]. The MNIST
dataset consists of 70,000 28x28 grayscale images of hand-
written digits (0-9), with 60,000 training images and 10,000
test images. We flattened each image into a 784-dimensional
vector and normalized the pixel values to [0,1].

Table II shows the classification accuracy of different mod-
els on the MNIST test set. Both baseline models achieved
similar performance, with Random Forest and 3LP reaching
approximately 96.9% accuracy. GASNN-RMS demonstrated
superior performance with 98.9% accuracy, representing a
significant improvement over the baseline methods.

Figure 4 presents a comparison of confusion matrices across
different approaches. The leftmost matrix shows the cluster-
ing structure discovered through unsupervised segmentation,
demonstrating the layer’s ability to identify natural group-
ings in the data without any prior knowledge of the digit
classes. While the segmentation effectively captures most digit
classes, we observe oversplitting in the cases of digits 1 and
9, with the former case being particularly non-trivial and
warranting further discussion in the next section. The middle
matrix displays the baseline 3LP performance, which achieves
respectable accuracy. The rightmost matrix shows GASNN-
RMS predictions, characterized by strong diagonal elements
that indicate excellent classification accuracy across all digit

classes. The scarcity of off-diagonal elements, even for tradi-
tionally challenging digit pairs such as 4-9, demonstrates that
GASNN-RMS effectively utilizes the learned data structure
to disambiguate similar cases. These visualizations confirm
that our approach not only enhances overall accuracy but also
maintains consistent performance across the full range of digit
classes.

IV. DISCUSSION

A. Insights from the Results

Our experimental results demonstrate several key insights
about GASNN’s capabilities and advantages. First, GASNN
significantly improves the performance of simple neural net-
works like 3LP, as evidenced by the substantial increase in
R2 scores from 0.41 to 0.90 for temperature prediction and
classification accuracy from 96.9% to 98.9% on MNIST. This
improvement is particularly notable in scenarios with limited
training data or computational resources.

The success of GASNN can be attributed to two main
factors. First, as visualized in Figure 5, the unsupervised
segmentation layer effectively exposes the underlying mani-
fold structure of the data to the predictor at an early stage.
This is demonstrated by the clear clustering patterns in the t-
SNE visualization, where digits naturally separate into distinct
regions despite no class labels being used in the segmentation
process.

Second, while the unsupervised segmentation may occa-
sionally produce imperfect clusterings (such as the overseg-
mentation of digit ’1’ seen in Figure 5), the subsequent
neural network effectively learns to handle these cases. This is
evidenced by the high classification accuracy achieved despite
such segmentation artifacts. The neural network appears to
leverage the multiple configuration views provided by GASNN
to resolve ambiguities and merge oversegmented clusters when
appropriate.

An interesting observation is that GASNN-combined, which
involves test data during the segmentation process, achieves
notably higher performance (R² of 0.90) compared to GASNN-
RMS (R² of 0.76) which segments training and test data sepa-
rately. While this may seem to challenge conventional wisdom
about test data isolation, it’s important to note that GASNN-
RMS still provides significant improvements over baseline
models without requiring test data access. The performance
gap between the two variants suggests that joint segmentation
in GASNN-combined allows better capture of the full data
manifold structure, though at the cost of requiring test data
during the RMS process. GASNN-RMS represents a more
practical deployment scenario, where new samples must be
processed independently, while still leveraging the benefits of
manifold-aware feature augmentation.

The temperature prediction results further validate these
insights in a regression context. The dramatic improvement
in R2 score and reduction in mean squared error suggest
that GASNN’s ability to capture data structure generalizes
well beyond classification tasks. This is particularly impressive
given the complexity of the relationship between 16S rRNA
sequences and optimal cultivation temperature values.
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Fig. 4. Comparison of confusion matrices for MNIST digit classification. The leftmost matrix shows the unsupervised segmentation results, the middle shows
the baseline 3LP model performance, and the rightmost shows GASNN-RMS predictions. Strong diagonal patterns indicate accurate classifications, while
off-diagonal elements reveal misclassification patterns between digit pairs.

Fig. 5. t-SNE visualization of a selected configuration from the unsupervised
segmentation layer for MNIST classification. The high-dimensional data is
projected into 2D space, with each point representing a digit and colors
indicating cluster assignments. Note the oversegmentation of digit ’1’, where
a single digit class is split into multiple clusters - a phenomenon discussed
in Section II-D.

B. Potential Applications

The demonstrated success of GASNN suggests several
promising applications, particularly in domains where data
exhibits strong manifold structure or where labeled data is
expensive to obtain. In the context of 16S rRNA analysis,
GASNN could significantly advance selective cultivation of
beneficial microorganisms. For example, in fecal microbiota
transplantation (FMT) therapy, accurately predicting optimal
growth conditions could improve the isolation and preservation
of therapeutic bacterial strains. Similarly, in industrial fer-
mentation, GASNN could help optimize cultivation conditions
for producing specific metabolites or enzymes, reducing the
extensive trial-and-error typically required.

Beyond microbiology, the method is especially valuable
in scenarios where obtaining ground truth labels requires
significant expertise or resources. For instance, in materials
science, determining the properties of new compounds often
requires extensive laboratory testing. GASNN could leverage
the natural clustering of material structures to improve pre-
dictions while requiring fewer labeled examples. Similarly,
in pharmaceutical development, where testing drug efficacy
requires expensive clinical trials, the model could utilize the
inherent patterns in molecular structures to enhance prediction
accuracy with limited training data.

The multi-configuration approach could also benefit do-
mains with inherent hierarchical structures. In medical imag-
ing, tissue samples often have natural organizational lev-
els (cells, tissues, organs) that could benefit from multiple
clustering views. Similarly, in remote sensing, land cover
classification involves natural hierarchies of terrain features
that could be better captured through GASNN’s architecture.
These applications particularly benefit from GASNN’s ability
to capture multiple levels of data organization while requiring
minimal labeled examples, making it especially valuable when
comprehensive labeling is prohibitively expensive or time-
consuming.

C. Limitations and Future Work

Despite its promising results, GASNN faces several key lim-
itations. A primary challenge lies in constructing meaningful
manifold structures from feature data to graph data, which
requires sufficient sample variance to establish connections
between data points. While this can be partially addressed
by increasing the k parameter in k-nearest neighbors, an
excessively high k value may create artificial or meaningless
connections that do not reflect true data relationships. To
mitigate this limitation, feature augmentation techniques could
be explored, particularly in computer vision and imaging ap-
plications where additional contextual or transformed features
might help establish more robust connections.

Another significant limitation emerges when considering
deeper neural networks or architectures with more parameters.
While GASNN demonstrably improves the performance of
simple neural networks, this benefit may not extend to more
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complex models. In fact, deeper networks may already be
capable of learning the manifold structures that GASNN’s un-
supervised segmentation layer aims to capture. In some cases,
the additional layer of graph-based feature extraction might
even interfere with the network’s natural ability to discover hi-
erarchical representations, potentially degrading performance.
This limitation requires careful consideration when applying
GASNN to problems where deep learning architectures are
standard, and we acknowledge that comprehensive testing
with deeper networks remains an important area for future
investigation.

These limitations suggest that GASNN’s effectiveness may
be most pronounced in specific scenarios: when working with
simpler neural architectures, when the underlying data has
clear but complex manifold structure, and when sufficient
samples are available to construct meaningful graph repre-
sentations. Understanding these boundaries and constraints
is crucial for appropriately applying GASNN in practical
settings.

V. CONCLUSION

A. Summary of Contributions

In this paper, we introduced GASNN, a novel approach
that combines graph-affiliated unsupervised segmentation with
simple neural networks to improve the analysis of 16S rRNA-
seq data. Our key contributions include:

• Development of a graph-based feature augmentation tech-
nique that captures the intrinsic manifold structure of
high-dimensional biological data through multiple clus-
tering configurations

• Demonstration of significant performance improvements
in predicting cultivation media temperature from 16S
rRNA sequences, achieving an R² of 0.90 with GASNN-
combined and 0.76 with GASNN-RMS, compared to
baseline models

• Validation of the method’s generalizability through suc-
cessful application to standard machine learning bench-
marks, including MNIST classification

• Introduction of two GASNN variants (GASNN-combined
and GASNN-RMS) that offer different trade-offs between
performance and practical deployment considerations

These contributions advance both the theoretical under-
standing of manifold-aware feature augmentation and its prac-
tical application in microbial cultivation optimization.

B. Future Directions

Several promising avenues for future research emerge from
this work:

• Enhanced Graph Construction: Investigation of alter-
native methods for constructing meaningful graph repre-
sentations from feature data, particularly in cases with
limited sample variance or sparse connectivity

• Integration with Deep Architectures: Exploration of
how GASNN’s principles can be adapted to complement
deeper neural networks without interfering with their
inherent representation learning capabilities

• Extended Bio Applications: Application of GASNN to
other biological prediction tasks, such as optimal pH
levels, nutrient requirements, or growth rates for bacterial
cultivation

• Theoretical Framework: Development of a formal the-
oretical framework to better understand the relationship
between manifold structure, multiple clustering configu-
rations, and prediction performance

• Real-time Adaptation: Investigation of methods to dy-
namically update the graph structure and clustering con-
figurations as new data becomes available, enabling con-
tinuous learning in practical applications

These future directions aim to address current limitations
while expanding the utility of GASNN across broader appli-
cation domains.

APPENDIX A
PROOF OF THE FIRST ZONKLAR EQUATION

Appendix one text goes here.

APPENDIX B

Appendix two text goes here.
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